समीकरण

From indicwiki
Jump to navigation Jump to search


समीकरण बनाना

वास्तविक हल में जाने से पहले हमें समीकरणों पर कुछ प्रारंभिक संक्रियाएँ करने की आवश्यकता होती है।

हमें प्रस्तावित समस्या की दी गई शर्तों से समीकरण (सामी-करण, सम-कारा या सम-क्रिया; सम, बराबर और की से, करने के लिए; इसलिए शाब्दिक रूप से, समान बनाना) बनाने की आवश्यकता है। इसके लिए बीजगणित या अंकगणित के एक या अधिक मूलभूत संक्रियाओं को लागू करने की आवश्यकता हो सकती है।

भास्कर द्वितीय कहते हैं: "यावत्-तावत् " को अज्ञात मात्रा के मूल्य के रूप में माना जाता है। फिर जैसा कि विशेष रूप से बताया गया है-एक समीकरण के दो बराबर पक्षों को घटाना, जोड़ना, गुणा करना या विभाजित करना बहुत सावधानी से बनाया जाना चाहिए।

बीजीय व्यंजक और बीजीय समीकरण

बीजीय व्यंजक को निम्न उदाहरण से समझा जा सकता है।

राम कहता है कि उसके पास श्याम से 10 सिक्के अधिक हैं। हम नहीं जानते कि राम के पास कितने सिक्के हैं। राम के पास कितने भी सिक्के हों। दी गई जानकारी के साथ

राम के पास धारित सिक्कों की संख्या = श्याम के पास धारित सिक्कों की संख्या + 10

हम श्याम द्वारा धारित सिक्कों की संख्या को x अक्षर से निरूपित करेंगे। यहाँ x अज्ञात है जो 1, 2, 3, 4 आदि हो सकता है।

x का प्रयोग करके हम लिखते हैं,

राम के पास रखे सिक्कों की संख्या = x+10

अत: 'x + 10' एक बीजीय व्यंजक है।

बीजगणित प्रतीकों के उपयोग का उपयोग करता है। ये प्रतीक अज्ञात मात्राओं और उनके साथ किए गए कार्यों का प्रतिनिधित्व करते हैं। निम्नलिखित तालिका में वे प्रतीक दिए गए हैं जिनका उपयोग प्राचीन भारतीय गणितज्ञों द्वारा कुछ बुनियादी कार्यों के लिए किया गया था।

क्रमांक बीजीय व्यंजक का संघटक संस्कृत शब्द प्रतीक/चिह्न उदाहरण
1 अज्ञात यावत्तावत्

कालकः

नीलकः , ......

या

का

नी , ........

या ३

का ४

नी ८

3x

4y

8z

2 योगफल योगः - या का

या ३ का ४

x + y

3x + 4y

3 गुणनफल भावितम् भा याकाभा

याकाभा ३

xy

3xy

4 वर्ग वर्गः याव x2
5 घनक्षेत्र घनः याघ x3
6 चौथी शक्ति वर्ग​-वर्गः वव यावव x4
7 स्थायी अवधि रूपम् रू रू ३ 3
8 ऋणात्मक ऋणम् मात्रा के ऊपर बिंदु (.) .

रू ४

-4

अक्षर या (यावत्-तावत् का संक्षिप्त नाम) अज्ञात मात्रा का सबसे लोकप्रिय प्रतिनिधित्व था। इसके वर्ग को यव कहा जाता था, जो यावत्-तावत्-वर्ग (वर्ग का अर्थ वर्ग) का संक्षिप्त नाम था। स्थिर पद को रू अक्षर से निरूपित किया गया था, जो रूप का एक संक्षिप्त नाम है जैसा कि उपरोक्त तालिका में दिखाया गया है। समीकरण में किसी भी ऋणात्मक चिह्न को पद के ऊपर एक बिंदु द्वारा दर्शाया जाता है।

यदि किसी व्यंजक में तीन अज्ञात मात्राएँ हैं, तो प्रयुक्त चिह्न या , का, और नी   हैं। ये यावत-तावत , कालका और नीलका के संक्षिप्त रूप हैं। पहली दो अज्ञात मात्राओं के उत्पाद को याकाभा के रूप में दर्शाया जाता है जहाँ या और का दो अज्ञात हैं और भा उनके उत्पाद के लिए है।

निम्नलिखित तालिका प्राचीन भारतीय गणितज्ञों द्वारा प्रयुक्त कुछ बीजीय व्यंजकों का निरूपण करती है।

क्रमांक आधुनिक संकेतन प्राचीन भारतीय संकेतन
1 x + 1 या १ रू १
2 3x - 7 या ३ रू ७.
3 2x – 8 या २ रू ८.
4 15x2 + 7x - 2 याव १५ या ७ रू २.
5 1x4 + 6x3 + 25x2 + 48x + 64 यावव १ याघ ६ याव २५ या ४८ रू ६४
6 18x2 + 12xy - 6xz -6x याव १८ याकाभा १२ यानीभा ६. या ६.


प्राचीन भारतीय गणितज्ञों द्वारा बीजगणितीय व्यंजक कैसे लिखे जाते हैं।

समीकरण 10 x - 18 = x2 +14 . पर विचार करें

इसे इस प्रकार लिखा जा सकता है,

0x2 + 10 x - 18 = 1x2 + 0x + 14

x2, x1, x0 (स्थिर पद) की स्थिति को देखते हुए, कुछ पैटर्न है? समीकरण लिखने का मानक तरीका x की उच्चतम घात से प्रारंभ होता है। तब x की घातों को उसके निम्नतम घात तक अवरोही क्रम में लिखा गया था। समीकरण लिखने के इस प्रारूप का अनुसरण प्राचीन काल से गणितज्ञों द्वारा किया जाता रहा है।

ब्रह्मगुप्त ने समीकरण को समकरण या संकरण कहा। इसका अर्थ है 'समान बनाना। एक समीकरण के दो पक्षों (LHS और RHS) को एक के नीचे एक लिखा जाता है। प्रतीक '=' का प्रयोग नहीं किया गया था। एक समीकरण के दोनों पक्षों को अज्ञात के लिए उपयुक्त मान (मानों) को खोजने के द्वारा समान बनाया गया था।

पृथिदाकास्वामिन (864 ईस्वी) ने ब्रह्म-स्फुता-सिद्धांत पर अपने भाष्य में समीकरण 40x - 48 = x2 + 51 को नीचे के रूप में लिखा है।

देवनागरी लिप्यंतरण आधुनिक संकेतन
याव ०  या १०  रू ८.

याव १  या ०    रू १

याव 0 या  10 rū 8.

याव 1 या 0 rū 1

0x2 + 10 x - 8 = 1x2 + 0x + 1

भास्कर द्वितीया के बीजगणित से समीकरण का एक उदाहरण यहां दिया गया है:

x4 - 2x2 - 400x = 9999

इसे इस प्रकार दर्शाया गया है,

यावव १ याव २.   या  ४.०० रू ०

यावव ० याव ०   या  ०       रू ९९९९

बीजीय व्यंजकों के साथ संक्रिया

भास्कर द्वितीय बीजगणितीय शब्दों का उपयोग करते हुए संक्रियाएँ इस प्रकार देते हैं :

स्याद्रूपवर्णाभिहतौ तु वर्णो द्वित्र्यादिकानां समजातिकानाम् ॥

वधे तु तद्वर्गघनादयः स्युस्तद्भावितं चासमजातिघाते।

भागादिकं रूपवदेव शेषं व्यक्ते यदुक्तं गणिते तदत्र ॥

"एक संख्यात्मक स्थिरांक और एक अज्ञात मात्रा का गुणनफल एक अज्ञात मात्रा है। दो या तीन समान पदों के गुणनफल उनके वर्ग या घन (क्रमशः) होते हैं। विषम पदों का गुणनफल भाविता है। भिन्न आदि ज्ञात के मामले में हैं। अन्य (प्रक्रियाएं) अंकगणित में वर्णित समान हैं।"

बीजीय व्यंजकों का जोड़ और घटाव

भास्कर द्वितीय अज्ञात राशियों के जोड़ और घटाव का नियम इस प्रकार देते हैं:

योगोऽन्तरं तेषु समानजात्योर्विभिन्नजात्योश्च पृथक् स्थितिश्च।

"जोड़ और घटाव समान पदों के बीच किया जाता है। विपरीत शब्दों को अलग रखा जाना चाहिए।"

व्याख्या:

यह सर्वविदित है कि जोड़ और घटाव केवल समान पदों में ही किया जा सकता है और विपरीत पदों को अलग-अलग रखा जाना है। समान शब्द वे शब्द हैं जिनमें समान अक्षर चर होते हैं जो समान शक्तियों के लिए उठाए जाते हैं। उदा., या ३, या ४, या ५ समान पद हैं। याव २, याव ५, याव ७ भी समान पद हैं। का ३, का ७, का १५ भी समान पद हैं।आजकल हम कहते हैं कि 3x, 4x, 5x समान पद हैं। इसी प्रकार 2x2, 5x2, 7x2 समान पद हैं। और 3y, 7y, 15y भी समान पद हैं। जब हमारे पास समान पद होते हैं, तो योग और अंतर को सरल बनाया जा सकता है। उदा. 3x + 5x को 8x के रूप में सरल बनाया जा सकता है। 10x2 - 4x2 को 6x2 के रूप में सरल बनाया जा सकता है।

विपरीत पद वे पद हैं जिनमें भिन्न-भिन्न चर या भिन्न-भिन्न घात वाले चर होते हैं। उदा.या ३, याव ३, याघ ४, का ५, काव, याकाभा । आधुनिक संकेतन में, इन्हें 3x, 3x2, 4x3, 5y, y2, xy के रूप में दर्शाया जाता है।

बीजीय व्यंजकों का गुणन

बीजगणित गुणन का नियम देता है -

गुण्यः पृथग्गुणकखण्डसमो निवेश्यस्तैः खण्डकैः क्रमहतः सहितो यथोक्त्या।

अव्यक्तवर्गकरणीगणनास चिन्त्यो व्यक्तोक्तखण्डगुणनाविधिरेवमत्र॥

"गुणक को गुणक के पदों के रूप में कई स्थानों पर रखें। गुणक के पदों को अलग-अलग क्रम से गुणा करें और समस्या में निर्देशानुसार परिणाम जोड़ें। यह अज्ञात संख्याओं और सर्ड के वर्गों के मामले में भी लागू होता है। अंकगणितीय संख्याओं के मामले में बताई गई आंशिक उत्पादों की विधि यहां भी लागू होती है।"

व्याख्या

प्राचीन भारतीय संकेतन आधुनिक संकेतन
यदि या ३ रू ५ और या ४ रू ७ क्रमशः गुणक और गुणक हैं,

उनका उत्पाद निम्नानुसार प्राप्त किया जा सकता है:

यदि 3x + 5 और 4x + 7 क्रमशः गुणक और गुणक हैं,

उनका उत्पाद निम्नानुसार प्राप्त किया जा सकता है:

गुणक के दो पद होते हैं, अर्थात् या ४ and रू ७ गुणक के दो पद हैं, अर्थात् 4x और 7
गुणक को दो स्थानों पर रखें। उन्हें गुणक के पदों से अलग से गुणा करें जैसा कि दिखाया गया है।

(या ३ रू ५) X या ४ = याव १२ या २०

(या ३ रू ५) X रू ७ = या २१ रू ३५

गुणक को दो स्थानों पर रखें। उन्हें गुणक के पदों से अलग से गुणा करें जैसा कि दिखाया गया है।

(3x + 5) X 4x = 12x2 + 20x

(3x + 5) X 7 = 21x + 35

परिणाम जोड़ें।

गुणन परिणाम है:: याव् १२ या ४१ रू ३५

परिणाम जोड़ें।

गुणन परिणाम है: 12x2 + 41x + 35

यदि और क्रमशः गुणक और गुणक हैं, तो उनका गुणनफल निम्नानुसार प्राप्त किया जा सकता है:

गुणक के दो पद हैं, अर्थात् cx और d। गुणक को दो स्थानों पर रखें। उन्हें गुणक के पदों से अलग से गुणा करें जैसा कि दिखाया गया है।

परिणाम जोड़ें।

गुणन परिणाम है:

समीकरणों का वर्गीकरण

लगभग 300 ई.पू. के विहित कार्य में पाया गया कि समीकरणों का हिंदू वर्गीकरण उनकी डिग्री के अनुसार हुआ है, जैसे कि सरल (तकनीकी रूप से यावत्-तावत् कहा जाता है), द्विघात (वर्ग), घन (घन) और द्विघात (वर्ग-वर्ग)।

आगे के पुष्ट सबूतों के अभाव में, हम इसके बारे में सुनिश्चित नहीं हो सकते। ब्रह्मगुप्त (628) ने समीकरणों को इस प्रकार वर्गीकृत किया है: (I) एक अज्ञात में समीकरण (एक-वर्ण-समीकरण), (2) कई अज्ञात में समीकरण (अनेक-वर्ण-समीकरण), और (3) अज्ञात के उत्पादों से जुड़े समीकरण (भैविता) )

एक अज्ञात (एक-वर्ण-समीकरण) में समीकरणों को फिर से दो उप वर्गों में विभाजित किया जाता है, अर्थात, (i) रैखिक समीकरण, और (ii) द्विघात समीकरण (अव्यक्त-वर्ग-समीकरण)। यहाँ से हमारे पास समीकरणों को उनकी डिग्री के अनुसार वर्गीकृत करने की हमारी वर्तमान पद्धति की शुरुआत है। पृथिदाकास्वामी (860) द्वारा अपनाई गई वर्गीकरण की पद्धति थोड़ी भिन्न है। उन्होंने इस प्रकार वर्गीकृत किया: (1) एक अज्ञात के साथ रैखिक समीकरण, (2) अधिक अज्ञात के साथ रैखिक समीकरण, (3) अपनी दूसरी और उच्च शक्तियों में एक, दो या अधिक अज्ञात के साथ समीकरण, और (4) अज्ञात के उत्पादों को शामिल करने वाले समीकरण। चूंकि तृतीय वर्ग के समीकरण के समाधान की विधि मध्य पद के उन्मूलन के सिद्धांत पर आधारित है, इसलिए उस वर्ग को मध्यमाहारण (मध्यम से, "मध्य", अहारण "उन्मूलन", इसलिए अर्थ "उन्मूलन" कहा जाता है। मध्य अवधि का")। अन्य वर्गों के लिए, ब्रह्मगुप्त द्वारा दिए गए पुराने नामों को बरकरार रखा गया है। वर्गीकरण की इस पद्धति का अनुसरण बाद के लेखकों ने किया है।

भास्कर II तीसरे वर्ग में दो प्रकारों को अलग करता है, अर्थात् "(i) अपनी दूसरी और उच्च शक्तियों में एक अज्ञात में समीकरण और (ii) उनकी दूसरी और उच्च शक्तियों में दो या दो से अधिक अज्ञात वाले समीकरण।' कृष्ण के अनुसार (1580) समीकरण मुख्य रूप से दो वर्गों के होते हैं: (1) एक अज्ञात में समीकरण और (जेड) दो या दो से अधिक अज्ञात में समीकरण। पहला वर्गीकरण फिर से, दो उपवर्गों से मिलकर बनता है: (i) सरल समीकरण और (ii) द्विघात और उच्च समीकरण। दूसरे वर्गीकरण में तीन उपवर्ग हैं: (i) एक साथ रैखिक समीकरण, (ii) अज्ञात की दूसरी और उच्च शक्तियों को शामिल करने वाले समीकरण, और (iii) अज्ञात के उत्पादों को शामिल करने वाले समीकरण। फिर वह देखता है कि ये पांच वर्ग कर सकते हैं कक्षा (1) और (2) के दूसरे उपवर्गों को मध्यमाहारण के रूप में एक वर्ग में शामिल करके चार तक कम किया जा सकता है।

एक अज्ञात में रेखीय समीकरण

एक रैखिक समीकरण एक समीकरण है जिसमें चर, गुणांक और स्थिरांक की केवल पहली शक्ति होती है। उदाहरण के लिए, समीकरण 4x + 7 = 8 एक चर में एक रैखिक समीकरण है। इसे प्रथम-क्रम समीकरण कहा जाता है क्योंकि चर (x) की घात एक है। यदि समीकरण में x की उच्चतम शक्ति दो के रूप में है, अर्थात x2 , तो यह एक द्विघात (द्वितीय क्रम) समीकरण होगा।

प्रारंभिक समाधान

शुल्बसूत्र; śulba में एक अज्ञात में एक रैखिक समीकरण का ज्यामितीय समाधान पाया जाता है, जिसमें से सबसे पहला 800 ई.पू. के बाद का नहीं है।

स्थानांग-सूत्र (सी। 300 ईसा पूर्व) में इसके नाम (यावत्-तावत् ) द्वारा एक रैखिक समीकरण का संदर्भ है जो उस समय के समाधान की विधि का सूचक है।

बख्शाली ग्रंथ में सरल बीजीय समीकरणों और समाधान पद्धति से जुड़ी समस्याएं हैं, जो शायद ईसाई युग की शुरुआत में लिखी गई थीं।

एक समस्या यह है कि "पहले को दी गई राशि ज्ञात नहीं है। दूसरी को पहले की तुलना में दोगुना दिया जाता है, तीसरे को दूसरे से तीन गुना और चौथे को तीसरे से चार गुना अधिक दिया जाता है। वितरित की गई कुल राशि है 132. पहले की राशि क्या है?"

यदि x पहले को दी गई राशि हो, तो समस्या के अनुसार,

x+2x+6x+24x=132

असत्य स्थिति का नियम

इस समीकरण का हल इस प्रकार दिया गया है:

"'किसी भी वांछित मात्रा को रिक्त स्थान पर रखना'; कोई भी वांछित मात्रा 1 है; 'फिर श्रृंखला का निर्माण करें।

1 2 2 3 6 4
1 1 1 1 1 1

'गुणा किया हुआ'

1 2 6 24

जोड़ा गया' 33. "दृश्यमान मात्रा को विभाजित करें'

132

33

(जो) कमी करने पर बन जाता है

4

1

(यह है) दी गई राशि (पहले को)।"

बख्शाली ग्रंथ में समस्याओं के एक और सेट का समाधान अंततः ax+ b=p प्रकार के समीकरण की ओर ले जाता है। इसके समाधान के लिए दी गई विधि यह है कि x के लिए कोई मनमाना मान g रखा जाए, ताकि

ag+ b =p' कहा जाए ।

तब सही मान होगा

{\displaystyle x = {\frac{(p - p')}{a}} + g}

रैखिक समीकरणों का हल

आर्यभट्ट (499) कहते हैं:

"दो व्यक्तियों से संबंधित ज्ञात "राशि" के अंतर को अज्ञात के गुणांकों के अंतर से विभाजित किया जाना चाहिए। यदि उनकी संपत्ति समान है, तो भागफल अज्ञात का मान होगा।"

यह नियम इस प्रकार की समस्या पर विचार करता है: दो व्यक्ति, जो समान रूप से समृद्ध हैं, के पास क्रमशः a, b एक निश्चित अज्ञात राशि का c, d के साथ एक साथ है।

नकद में पैसे की इकाइयों। वह राशि क्या है?

यदि x अज्ञात राशि हो, तो समस्या से

ax + c = bx+ d

इसलिए

जिस वजह से नियम।

bx + c = dx + e के रूप के रैखिक समीकरण को हल करने का नियम जहाँ b, c, d और e दिए गए हैं, ब्रह्मगुप्त द्वारा निम्नानुसार दिया गया है।


अव्यक्तान्तरभक्तं व्यस्ततां समानऽव्यक्तं।

कक्षा व्यक्ताः शोध यशद्रूपाणी तदधस्तात II

"अज्ञात के अंतर से उल्टे और विभाजित निरपेक्ष संख्याओं का अंतर, एक समीकरण में अज्ञात का [मान] है।"

व्याख्या: समीकरण पर विचार करें, bx + c = dx + e

यहाँ x अज्ञात राशि है जिसका मान ज्ञात करना है। अक्षर b और d इसके गुणांक हैं। शेष अक्षर c और e संख्यात्मक स्थिरांक हैं।

निरपेक्ष संख्याओं का अंतर = c-e

उल्टे पूर्ण संख्याओं का अंतर = e-c

अज्ञात के गुणांकों का अंतर = b - d

x के रूप में पाया जाता है


भास्कर द्वितीय बताते हैं कि उपरोक्त सूत्र कैसे प्राप्त किया जाता है।

यावत्तावत् कल्प्यमव्यक्तराशेर्मानं तस्मिन् कुर्वतोद्दिष्टमेव ।

तुल्यौ पक्षौ साधनीयौ प्रयत्नात्त्यक्त्वा क्षिप्त्वा वाऽपि संगुण्य भक्त्वा ॥

एकाव्यक्तं शोधयेदन्यपक्षाद्रूपाण्यन्यस्येतरस्माच्च पक्षात्

शेषाव्यक्तेनोद्धरेद्रूपशेषं व्यक्तं मानं जायतेऽव्यक्तराशेः[1]

"अज्ञात मात्रा (x) मान लें। रद्द करने या कम करने या गुणा करने या विभाजित करने के बाद अज्ञात शब्दों से जुड़े कारकों को एक तरफ और स्थिर शब्दों को दूसरी तरफ स्थानांतरित करके वांछित प्रक्रिया करें। अज्ञात के गुणांक से पदों को विभाजित करें और अज्ञात कारक के मान की गणना करें।"

व्याख्या: उदाहरण के लिए, आइए हम निम्नलिखित समीकरण पर विचार करें:

6x - 5 = 2x + 3

(i) अज्ञात पदों वाले कारकों को एक तरफ और अचरों को दूसरी तरफ स्थानांतरित करने पर, हम प्राप्त करते हैं,

6x - 2x = 3 + 5

इसलिए, 4x = 8

ii) अज्ञात के गुणांक द्वारा पदों को विभाजित करने पर, हम प्राप्त करते हैं

x = 2


श्रीपति लिखते हैं:

"पहले ज्ञात पद को छोड़कर किसी भी पक्ष (समीकरण के) से अज्ञात को हटा दें; दूसरी तरफ उल्टा (किया जाना चाहिए)। गुणांक के अंतर से विभाजित उल्टे क्रम में लिए गए निरपेक्ष शब्दों का अंतर अज्ञात का मान अज्ञात का होगा।


नारायण लिखते हैं:

"एक तरफ से 'अज्ञात' और दूसरी तरफ से ज्ञात मात्रा को साफ़ करें, फिर अज्ञात के अवशिष्ट गुणांक द्वारा ज्ञात अवशिष्ट को विभाजित करें। इस प्रकार निश्चित रूप से अज्ञात का मूल्य ज्ञात हो जाएगा।"

उदाहरण के लिए हम ब्रह्मगुप्त द्वारा प्रस्तावित एक समस्या लेते हैं:

"उस समय के लिए बीते हुए दिनों की संख्या बताएं जब अवशिष्ट डिग्री के बारहवें भाग में एक से चार गुना वृद्धि हुई हो, जमा आठ शेष के बराबर होगा

डिग्री प्लस वन।"

इसे चतुर्वेद पृथुदका स्वामी ने इस प्रकार हल किया है:

"यहाँ अवशिष्ट अंश यावत्-तावत् हैं,

या एक की वृद्धि हुई, या 1 रु 1; इसका बारहवाँ भाग, (या 1 रु 1) / 12

इसका चार गुना, (या 1 रु 1) / 3 ; प्लस निरपेक्ष मात्रा आठ, (या 1 रु 25) / 3।

यह अवशिष्ट डिग्री प्लस एकता के बराबर है।

दोनों पक्षों का बयान इस प्रकार

तिगुना है

या 1 रु 25

या 3 रु 3

अज्ञात के गुणांकों के बीच का अंतर 2 है। इससे निरपेक्ष पदों का अंतर, अर्थात् 22, विभाजित किया जा रहा है, सूर्य की डिग्री के अवशिष्ट का उत्पादन किया जाता है। 11. इन अवशिष्ट डिग्री को अलघुकरणीय के रूप में जाना चाहिए। बीते हुए दिनों को पहले की तरह (आगे बढ़ते हुए) घटाया जा सकता है।"

दूसरे शब्दों में, हमें समीकरण को हल करना होगा

जो देता है x + 25 = 3x + 3

2x = 22

इसलिए x= 11

निम्नलिखित समस्या और उसका समाधान भास्कर द्वितीय के बीजगणित से हैं:

"एक व्यक्ति के पास तीन सौ सिक्के और छह घोड़े हैं। दूसरे के पास समान मूल्य के दस घोड़े (प्रत्येक) हैं और उस पर सौ सिक्कों का और कर्ज है। लेकिन वे

समान मूल्य के हैं। घोड़े की कीमत क्या है?

"यहाँ सम-निकासी के लिए कथन है:

6x + 300 = 10x - 100

अब, नियम के अनुसार, 'एक तरफ से अज्ञात को दूसरी तरफ से घटाएं', पहली तरफ अज्ञात को दूसरी तरफ से घटाया जा रहा है,

शेष 4x है। दूसरी तरफ का निरपेक्ष पद पहली तरफ के निरपेक्ष पद से घटाया जाता है, तो शेष 400 होता है। शेष ज्ञात

संख्या 400 को अवशिष्ट अज्ञात 4x के गुणांक से विभाजित किया जा रहा है, भागफल को x, (अर्थात् 100) के मान के रूप में पहचाना जाता है।"

  1. (Bijagaṇita, ch. Ekavarṇa-samīkaraṇa, vs.1, 2, pp.43,44)